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ABSTRACT

Generative Adversarial Networks (GANs) can learn pat-
terns from real samples and harnesses this information to cre-
ate novel data. GANs have recently been applied to in silico
design of protein and DNA sequence. This work extends a
method that not only produces realistic sequences but allows
for feature enrichment - Feedback GAN. Using this approach,
we designed novel proteins optimized to contain multiple 3D
structural properties.

Index Terms— GAN, Generative Models, Language
GAN, Sequences, Protein Sequence

1. BACKGROUND

Designing novel protein structures is important both for
protein-based drug development and genetic engineering.
There has been an effort to generate protein and DNA se-
quences using generative neural networks [3, 1]. In this work,
we extend the feedback-mechanism approach described in
[1]. The generative model uses a separate network that
grades generated sequences and passes the top-performing
sequences to the discriminator as the real ones. This project
extends from the previous effort to generate samples with an
α-helix (H) to optimization of more rare features and multiple
features at once.

2. IMPLEMENTATION

2.1. Overview

We have implemented a Feedback-GAN architecture that
consists of three main parts: a generator, a discriminator, and
a feedback network. First, GAN is pre-trained to produce
realistic-looking DNA sequences. Separately, Feedback Net
is trained to recognize the presence of the structural prop-
erties and acts as a multi-label classifier. Overall, protein
structure can be characterized by eight different states which
correspond to the different 3D orientation of a protein: he-
lix (G), α-helix (H), π-helix (I), β-stand (E), bridge (B),
turn (T), bend (S), and coil (C). After pre-training, batches
of sequences produced by the generator are passed to the
Feedback Net and receive eight scores that correspond to the

probability of each of the eight structures being present in a
sequence. If, for example, the desired features are E, H, C,
then the generator’s outputs that pass a threshold for E, H,
C are getting added to the discriminator’s input as the real
sequences. The generator thus slowly learns the patterns of
the top-performing results. Note that the sequences pass as
exemplary only if scores for every desired feature is above
the threshold.

2.2. Feedback Network

Formally, the task of predicting these eight structures from
sequences is called the Q8-problem. Given its complexity, we
omit the exact positioning of the 3D property for the purposes
of this experiment and focus just on whether it appears in any
given sequence or no.

Given the sequential nature of the protein data, we im-
plemented an architecture that combines an embedding layer
and bidirectional LSTMs. The network was optimized as a
multi-label classifier. More specifically, the last layer of the
network consists of eight nodes, each with a sigmoid activa-
tion. The network also utilizes the binary cross-entropy loss
for its learning. Thus, Feedback Net outputs the probability
of 8 labels being present in the input.

Fig. 1. The Feedback Net architecture.



2.3. GAN

The GAN architecture corresponds to the language WGAN
with a gradient penalty described in [1, 2]. The generator
and the discriminator consist of five residual blocks that per-
form the 1D convolution operation and up- or down- sam-
ple the inputs, respectively. The generator G takes in a la-
tent seed vector z ∈ RD. Its output is a matrix of logits
A = G(z) ∈ RL×M where L is the length of a sequence and
M is the number of encoding letters. The matrix A represents
probabilities of the position li corresponding to each letter.
This softmax output is passed directly to the discriminator.
For the final output, the letter with the maximum probabil-
ity for each position is chosen (argmax) and the output is an
L-dimensional vector.

3. DATASET ANALYSIS

The dataset of protein sequences used for both Feedback and
GAN pre-training was obtained from an open-source Protein
Secondary Structure Dataset from Kaggle. Dataset contains
95,915 samples of varying lengths with up to 800 amino acids
in a sequence. We have used sequences with up to 75 amino
acids for GAN pre-training (over 24,000 training samples)
and with up to 128 amino acids for Feedback Net pre-training
(88,751 training samples).

In the dataset, there are rare and common features. The
frequency distribution of features in the dataset corresponds
to the natural distribution in proteins. These numbers were
taken into account during Feedback Net training and during
feature optimization by fbGAN.

Fig. 2. Distribution of features in the dataset (note that se-
quence may contain more than one feature)

4. TRAINING

4.1. Feedback Net Training

We started by implementing a network with a single-label task
(picks dominant feature as a label for sequence). However,
this approach appeared to be non-suitable for our problem, as

we later learned that the dataset is dominated by 3 labels (Fig
2).

Fig. 3 shows the accuracy, precision, recall, f-1 score, and
support metrics for each class. Note that the low recall score
for the I class corresponds to its representation in the training
set (less that 0.3%). To our knowledge, Q8 problems focus
on locating the features within sequences and thus cannot be
directly compared with our binary classification network.

Fig. 3. Multi-label classification summary

4.2. GAN Training

We first implemented GAN for learning 21-characters (20
amino acids and one padding symbol). However, this ap-
proach did not lead to loss convergence and the produced se-
quences repeated only one or two character at random. To
overcome this problem, we used the DNA encoding of pro-
tein sequences which is essentially a one-to-one mapping and
allows for conversion without a substantial loss of informa-
tion. Each amino acid is encoded by three DNA letters. We
have trained the model to produce DNA sequences of length
225 (75 amino acids). The sequences were prep-ended and
appended with start and end codons (ATG and TAG).

We have confirmed that the validity of generated se-
quences by comparing their biochemical properties to the
real sequences (Fig 5). Given the GAN’s susceptibility to
mode collapse [4], we investigated the similarity of the gen-
erated sequences using a simple Levenshtein (edit) distance
metric (Fig 6).

Fig. 4. GAN pre-training. The loss and gradient penalty
curves over epochs. Hyperparameters: epochs = 10, gradi-
ent penalty = 5, learning rate = 0.002.



Fig. 5. GAN pre-training. Biochemical properties of se-
quences generated by the generator at the beginning (epoch
1) as compared to the end of training (epoch 20).

Fig. 6. Edit (Levenshtein) distance of the real sequences (100
samples) and the distance of the generated sequences (100
samples).

5. RESULTS

To test the approach, we ran two types of experiments: opti-
mizing for single features and for a combination of different
features at once. The network was able to separately enrich
for the common features by up to 30-40% (see external link).
However, for very rare features such as I (π-helix), only a very
small enrichment was observed, after lowering the threshold
(the score generated sequences needed to pass to be passed to
the discriminator) to 0.1 and substantially extending the train-
ing time (Fig. 7D).

Next, we tested how the network performs optimization
for combination of features. We optimized for three common
features (C,H,E), 1 common and 2 rare (E,T,G), and 3 rare
(B,G,I). Interestingly, the feature G achieved a 20% improve-
ment in combination with E,T (Fig. 7A) but not B,G (Fig. 7C)
which suggests that certain structures are not easily combined
together in one sequence. This is in an agreement with their
natural conditional distribution. (see supplemental data).

Fig. 7. Scores history during fbGAN training. Scores over
steps plotted. Best scores indicate the scores of the samples
at passed a threshold during training.

6. FUTURE WORK

Given recent advancements with AlphaFold2, incorporating
protein distance maps into feedback mechanism might lead
to a more precise optimization of features. This would al-
low us to monitor the novelty and similarity of the gener-
ated sequences more precisely, by taking the relative loca-
tion of the features into consideration. Introducing similarity
penalty during training might also force the generator to pro-
duce more diverse sequences.

For rare features optimization, we plan to incorporate a
dynamic, gradually increasing threshold, allowing the Dis-
criminator to have more sequences to learn from at the very
beginning and becoming more ”selective” once the scores im-
prove.

https://deep-life.github.io/experiments.html
https://deep-life.github.io/dataset.html
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